Report of Preliminary Geotechnical Exploration

Epps Mill Road Interchange Project Mainline Report

TDOT Project No. 75I024-S1-010 GES File No. 7513321 / PIN No. 124683.06 Murfreesboro, Rutherford County, Tennessee

> Prepared for Neel-Schaffer, Inc. Nashville, Tennessee

> Prepared by: TTL, Inc. Nashville, Tennessee

Project No. 00024082902.00 September 23, 2025

Mr. Michael Biggs, PE, CPESC Neel-Schaffer, Inc. (NS) 210 25th Avenue North, Suite 800 Nashville, Tennessee 37203

RE:

Report of Preliminary Geotechnical Exploration Epps Mill Road Interchange Project – Mainline Report Murfreesboro, Rutherford County, Tennessee TTL Project No. 000240802902.00 TDOT Project No. 751024-S1-010 GES File No. 7513321 / PIN No. 124683.06

Dear Mr. Biggs:

TTL has completed the preliminary geotechnical exploration for the roadway realignment (mainline) as part of the Epps Mill Road Interchange project in Murfreesboro, Tennessee. Our services were provided in accordance with our proposal, dated October 11, 2024. This report documents our preliminary geotechnical exploration, including results of the field exploration and laboratory testing program; presents soil and bedrock information for analyses; and provides recommendations for design and construction. The report appendices provide typed boring logs, laboratory test data, and results of engineering analyses. Our services also included providing preliminary geotechnical exploration information for the planned bridge replacement over Interstate 24, as well as pavement recommendations for the planned construction. These reports and supporting documents have been submitted under separate covers.

As always, we enjoy working with your staff and appreciate the opportunity to support your design process. If we can be of further assistance, please contact our office at your convenience.

Sincerely,

TTL, Inc.

Ethan P. Laird, PE

Project Engineer

Leanna S. Whitwell, PE Principal Engineer

Attachments

CONTENTS

EXECU	TIVE SUMMARY	2
1.0	PROJECT INFORMATION	3
1.1	Project Description	3
1.2	Scope of Services	3
2.0	EXPLORATION FINDINGS	4
2.1	Site Conditions	4
2.2	Site Geology	5
2.3	Subsurface Stratigraphy	6
2.4	Pavement Cores	8
2.5	Laboratory Testing and Results	8
2.6	Groundwater Conditions	9
3.0	PRELIMINARY GEOTECHNICAL COMMENTS	9
4.0	ADDITIONAL EXPLORATION	9
5.0	CLOSING	. 10

GBA Informational Document

APPENDIX A

Site Location Map
Exploration Location Plan
Legend Sheet – Soil
Legend Sheet – Rock
Exploration Logs
Rock Core Photographs
Generalized Subsurface Cross Section Reports

APPENDIX B

Laboratory Results Summary Proctor Moisture Density Relationship California Bearing Ratio Asphalt Core Photographs

EXECUTIVE SUMMARY

Neel-Schaffer is performing civil design for the improvements planned along Epps Mill Road in Murfreesboro, Tennessee. The improvements will be approximately 4,500 linear feet, beginning at the intersection with Capital Way and ending at the intersection with State Route 2. The improvements consist of widening and re-aligning Epps Mill Road, new on- and off-ramps along Interstate 24 (I-24), and a new bridge over I-24. The project is in the early stages of development; therefore no drawings or stationing is available for reference in this preliminary report.

This Preliminary Geotechnical report addresses the planned re-alignment and widening of Epps Mill Road. This project also includes a new bridge that will be reported separately. This report provides the results of the field exploration and laboratory testing program, soil and bedrock information for analyses, and recommendations for design and construction of the roadway widening and realignment. The report appendices provide typed boring logs and laboratory test data, including boring locations.

The boring data generally showed a relatively shallow depth to bedrock across most of the site. Therefore, we anticipate that some areas of subgrade repairs will likely be required depending on final grades. We also anticipate underdrains may also be required where bedrock will be within a few feet of final grade. We recommend additional geotechnical exploration be performed to develop final design and construction recommendations for the project once final plans are available.

1.0 PROJECT INFORMATION

Project information was provided by Messer's Michael Biggs and Matt Lifsey (NS) in several e-mail transmissions and telephone calls. We were provided with a pdf document titled "124683.06-Concept Report 8-2-24.pdf" prepared by TDOT and STV, dated August 26, 2024. The document contained a summary of the project including a conceptual layout. We were also provided a set of drawings (11 sheets) titled "Proposed Layout," undated, prepared by NS. This drawing set shows the planned alignment and existing site grades.

Information provided suggests TDOT plans to procure a Design-Building Contractor for this project in 2026. Therefore, the project is in a preliminary design phase. We understand our services will be included as part of Owner Representative services within a Functional Design and Procurement Assistance program with final design and ultimate construction completed by the Design-Build contractor awarded the project to be constructed in 2028.

Our understanding of the project is summarized below:

1.1 Project Description

Item	Description
Project Location	The project is located along Epps Mill Road starting at Capital Way (west) and ending at State Route 2 (east) in Murfreesboro, Tennessee. Reference the Site Location Plan in Appendix A.
Proposed Improvements	We understand TDOT is planning to widen and re-align Epps Mill Road from State Route 2 (US Highway 41) to just past Capital Way (about 0.86 miles long) including ramp improvements at the interchange (Exit 89) with Interstate 24 (I-24) and a bridge replacement.
Bridge	A new bridge is planned over the I-24 to replace the existing bridge. The new bridge will be about 250 feet long and include at least one pier. Preliminary recommendations for this bridge are provided in a separate report.
Cut and Fill Slopes	Since final details about the alignment including existing or proposed grades are not available, we have assumed maximum cut depths and fill thicknesses will be less than 5 feet relative to existing grades. However, fills approaching 30 feet may be required for the new bridge abutments.

If the above information is not correct, please contact us so that we can make the necessary modifications to this document and our evaluation and recommendations, if needed.

1.2 Scope of Services

The purposes of the services were to explore subsurface conditions and develop preliminary geotechnical recommendations for the project. We drilled 18 soil test borings, excluding off-set borings, performed eight pavement cores, and performed laboratory testing of recovered samples to assist with development of our recommendations. Assessment of environmental conditions was beyond the scope of our services. As noted previously, our scope included providing a preliminary geotechnical report for the planned bridge replacement, as well as pavement recommendations for the project. These reports will be submitted under separate covers.

2.0 EXPLORATION FINDINGS

2.1 Site Conditions

Item	Description
Existing Improvements	Epps Mill Road is currently a paved two lane road with turns lanes at various locations within the project limits, as well as a bridge over I-24. Markings (surface paint and flags) for underground utilities (natural gas, water, and petroleum) were observed in the vicinity of the project site, mostly on the east of the project limits. Overhead electrical lines were present parallel to Epps Mill Road for most of the project limits.
Current Ground Cover	The ground surface adjacent to Epps Mill Road is mostly grass covered. Asphalt pavements are present at various locations where local roads or parking lot entrances intersect Epps Mill Road.

Photographs depicting general conditions of the study area at the time of our field activities are shown below.

View of Epps Mill Road near its intersection with Miller Lane

View of Epps Mill Road near its intersection with Forbus Drive

View of Epps Mill Road near its intersection with Capital Way

View of Epps Mill Road looking north towards its intersection with SR2

2.2 Site Geology

The Geologic Map of the Webbs Jungle Quadrangle, Tennessee, dated 1964, indicates the project site is underline by the Lebanon Limestone formation. This formation is typically a fine-grained, thinly bedded, gray, fossiliferous limestone with clay/shale partings. The limestone weathers to produce a thin layer (less than 5 feet thick) of residual soil which is typically a high plasticity clay. Glades (i.e., areas of very thin soil) are common on which only limited vegetation, other than cedar trees, will grow. This formation is susceptible to solution weathering and sinkhole development.

Limestone is susceptible to solution weathering and development of karst features, such as sinkholes. We did not observe indications of karst features or sinkholes at the site during our field activities and review of the geologic map did not indicate mapped depressions at the site. The scale of the map often precludes the mapping of smaller features and the historical development of the site could have masked indicators of karst.

Some geologic settings in Tennessee contain rock that can produce acid when degraded with water. We did not observe acid producing rock during our exploration.

A few of the borings encountered existing fill below the surface materials of the site. Fill material is typically soil, but may include rock particles, placed by the actions of man. Fill can be problematic for site development when it has not been compacted in thin lifts. Uncompacted or poorly compacted fill can be a source of unpredictable and excessive settlements or other measures of poor structural performance. Fill that has been placed without engineering observation or documentation can sometimes contain objectionable inclusions or constituents, such as fibrous organic pieces (tree trunks or brush piles), junk and debris, trash, excessively wet or high plasticity soils, or large rock boulders. When such undesirable inclusions are present, the consistency or density of the fill cannot necessarily be correlated with conventional indicators, such as drive-sample blow counts or estimates of unconfined compressive strength of cohesive soils. For this reason, consistency descriptions of fill layers are typically not included on boring logs.

2.3 Exploration Procedures

Exploratory borings and pavement cores were located in the field using a recreational grade hand-held GPS unit (Montana 680t) and should be considered approximate. Elevations of the ground surface shown on the respective logs or profiles were interpolated from topographic contours shown on the provided drawings and should be considered approximate. Surveying the test locations for vertical and horizontal control was beyond the scope of this exploration.

The borings were drilled using conventional hollow-stem auger drilling methods by an all-terrain-vehicle drill rig. Soil samples were obtained at selected depths in general accordance with the Standard Penetration Test (SPT) described in ASTM D1586. For this test, a split-barrel sampler is driven into the soil through three increments of 6 inches with blows from a 140-pound hammer falling 30 inches. The number of hammer blows required to advance the split-barrel sampler through each increment is recorded, and the sum of the final two blow counts is called the "N-value," with units of blows per foot (bpf). Where it was not possible to advance the sampler through a full 6-inch increment with 50

hammer blows, driving the sampler was terminated and the sampler penetration was measured. N-values for this condition are reported as "50/x," where x is the sampler penetration in inches. The N-values recorded during the sampling process provide an index to the strength and compressibility of the soil.

Each borehole was checked for the presence of groundwater after removing the drill tools by lowering a measuring tape down the open borehole. The depth to groundwater or the depth at which the borehole caved-in was recorded.

Where rock coring was performed, the borehole was checked for the presence of groundwater through the hollow-stem auger or drill casing after reaching auger refusal but before the start of rock coring. The borehole was again checked for the depth to water after removal of rock coring tools and casing.

Each borehole was backfilled to the ground surface with auger cuttings after making final groundwater measurements. Where rock coring was performed the borings were backfilled with bentonite chips up to the bedrock/soil interface and then cuttings were used up to the surface. Where pavements were penetrated, a patch of asphalt was applied at the surface. Auger cuttings sometimes consolidate after backfilling causing the top of the backfill column to settle and leaving an open hole at the ground surface. Return trips to the site to top-off backfill that has settled were not part of our scope of services.

2.4 Subsurface Stratigraphy

Subsurface conditions within the project limits were evaluated by drilling 14 exploratory borings at the approximate locations shown on the ELP in Appendix A. Soil descriptions follow the Unified Soil Classification System (USCS), which is described in ASTM D2487 and D2488. Our geoprofessional also logged the recovered core samples for lithology and measured recovery (REC) and Rock Quality Designation (RQD). The results of the measurements, as well as photographs of the recovered rock core are provided in Appendix A.

Information about the subsurface stratigraphy encountered at the test locations is provided on the logs and generalized subsurface cross-section (profiles) in Appendix A. The logs and profile represent our interpretation of the subsurface conditions at the test locations based on tests and observations performed during the exploration, visual classification of the soil samples by a geoprofessional, and laboratory tests conducted on select soil samples. The lines designating the interfaces between various strata on the logs and profiles represent the approximate strata boundary. The transition between strata may be gradual. Conditions may vary at locations away from or between the boring locations.

BORING SUMMARY

Boring No.	Depth to Refusal (feet)	Total Hole Depth (feet)
B-02	28-1/2	38-1/2
B-03	4-1/2	14-1/2
B-07	1-1/2	1-1/2
B-08	5-1/2	5-1/2
B-09	6	6
B-10	8-1/2	8-1/2
B-11	11	11
B-12	17	17
B-13	4	4
B-14	4	4
B-15	5-1/2	5-1/2
B-16	1/2	1/2
B-17	2-1/2	2-1/2
B-18	3	3

Information from the exploratory borings advanced is summarized in the table below.

SUMMARY OF SUBSURFACE STRATIGRAPHY

Stratum	Approximate Thickness of Stratum ¹	Material Description	Properties ²	
	1 to 6 inches	Topsoil (absent in B-02)		
Surface Material	6 inches	Asphalt (B-02)	N/A	
	16 inches	Basestone (B-02)		
Possible Fill or Fill (Absent in B-08 and B-09) 3 feet to as much as 22 feet		Lean Clay (USCS – CL), brown, red-brown, and light brown, with variable amounts of chert and limestone fragments and black mineral staining, moist OR Fat Clay (USCS – CH), dark brown and red-brown, with variable amounts of chert and limestone fragments and black mineral staining, moist	N-values: 7 to 29 bpf, with most values between 9 and 15 bpf MC: 14% to 27% LL: 45 to 62 PI: 25 to 36	
Residuum (Absent in B-07, B- 13, B-17, and B-18)	Auger Refusal Depths	Fat Clay (USCS – CH) stiff to very stiff, red-brown and brown with some light brown and gray mottling, with variable amounts of limestone fragments, moist OR Lean Clay (USCS – CL), very stiff, brown and red-brown, with variable amounts of fine roots and limestone fragments, moist	N-values: 9 to 43 bpf, with most values between 9 and 24 bpf MC: 15% to 42%, with most values between 15% and 25% LL: 37 to 61 PI: 15 to 34	
Weathered Bedrock (above auger refusal in B-07, B-12, and B-13) Weathered 1-½ feet (B-07) to 17 feet (B-12)		Weathered Limestone Bedrock with interbedded clay or possibly a limestone boulder within the overburden or bedrock pinnacle	N/A	
Auger refusal was encountered at depths ranging between ½ and 28-½ feet below existing grades at each location. Refusal materials were explored using rock coring techniques in boring B-02.				
Bedrock	38-½ feet	Limestone, moderately hard, gray, fine to medium grained, thin to medium bedded, moderately fractured, slightly weathered to fresh	RQD: 26% to 86% REC: 88% to 100%	

Stratum	Approximate Thickness of Stratum ¹	Material Description	Properties ²
	Suatum -		

¹ Depths rounded to the nearest half-foot or nearest inch.

SUMMARY OF BORING EXTENDED INTO BEDROCK

Boring No.	Auger Refusal and Start of Rock Core Depth (feet)	Length of Rock Core (feet)	Bottom of Hole Depth (feet)
B-02	28-1/2	10	38-1/2
B-03	4-1/2	10	14-1/2

2.5 Pavement Cores

The existing pavements were cored at eight locations (C-O1 to C-O8) along Epps Mill Road. The approximate location of these cores is shown on the ELP in Appendix A. At each location, we measure the asphalt and basestone thickness. Photographs of the recovered asphalt cores are included in Appendix A. Evaluation of the underlying subgrade was beyond our scope of services. The table below summarizes our findings.

PAVEMENT CORING SUMMARY

Coring ID	Asphalt Thickness (inches)	Basestone Thickness (inches)
C-01	13	2
C-02	4-1/2	11-1/2
C-03	6-1/2	14-1/2
C-04	4	11
C-05	10	4
C-06	7	8
C-07	11	8-1/2
C-08	10	4-1/2

2.6 Laboratory Testing and Results

Laboratory testing was performed in general accordance with ASTM and/or AASHTO procedures. Our geoprofessional reviewed the boring results and selected samples for laboratory testing to best represent the goals of the testing program. Laboratory testing included soils classification testing (Atterberg Limits) and natural moisture content testing. Some of the soil and rock samples were selected for advanced laboratory testing. These tests included unconfined compressive strength of rock cores, Proctor compaction, and California Bearing Ration (CBR). The results of Proctor compaction and CBR test are reported separately in our report for the roadway re-alignment. Results of Proctor compaction, CBR test, and unconfined compressive strength tests are summarized in the tables below.

² Includes N-values of applicable samples, not including amplified N-values, bpf = blows per foot, MC = Moisture Content, LL = Liquid Limit, PI = Plasticity Index. REC = recovered rock core and RQD = rock quality designation

SUMMARY OF ADVANCED LABORATORY TESTING ON SOIL

Sample Location	Compaction (ASTM D698)		CBR (ASTM D1883)	
Location	OMC, %	MDD, pcf	% MDD	CBR
B-02	19.4	104.9	98.1	6.27
B-03	18.9	98.4	3.97	
OMC = optimum moisture content; MDD = maximum dry density; CBR = California Bearing Ratio.				

Results of the laboratory tests performed are provided in Appendix A.

2.7 Groundwater Conditions

Groundwater was not encountered in the borings at refusal depths. Water level measurements made in the borings after rock coring was completed showed groundwater at depths ranging between 1 and 3 feet below ground surface (bgs), except for B-02 and B-03 where the water level was measured at 13 and 2 feet bgs, respectively. In our opinion, this water level was likely influenced by fluids introduced into the borehole during rock coring.

The groundwater surface can fluctuate throughout the year due to seasonal changes in climate, precipitation, vegetation, surface runoff, water levels in nearby water bodies, and other factors. The groundwater level below the site may fluctuate in response to such changes and be different after the exploration.

3.0 PRELIMINARY GEOTECHNICAL COMMENTS

The boring data generally showed a shallow depth to bedrock across most of the site and bedrock was particularly shallow on the north end of Epps Mill Road near the intersection with State Route 2. Due to this shallow bedrock condition the possibility exists that shallow perched ground water may build up near the soil bedrock interface. Consideration should be given to incorporating an underdrain where bedrock will be within a few feet of pavement subgrade, otherwise the pavement subgrade may become saturated leading to premature pavement failures. Therefore, construction plans should include a provision for water removal, such as underdrains. The location and limits will be determined based on final line and grade.

Although we did not observe widespread areas that will require subgrade repair during our field activity, the possibility exists that subgrade repairs may be required for the project. Typical repairs including undercut and replacement with Graded Solid Rock (GSR). The actual location and limits of potential repairs should be determined based on final line and grade.

In review of available subsurface data and laboratory testing, we recommend a CBR of 4.0 be utilized for pavement design on the project.

4.0 ADDITIONAL EXPLORATION

We recommend additional exploration be performed at the site once additional project information is available. The additional geotechnical exploration should include a sufficient number of soil test borings or test pits to assess the depth to bedrock, including rock coring, as appropriate. The final exploration should be completed in general accordance with TDOT standards and include applicable

geotechnical sheets (G-Sheets) with recommended remediation and estimated quantities based on final line and grade plans.

5.0 CLOSING

The preliminary analyses and information submitted in this report are based upon the data obtained from soil borings at the approximate locations shown on the appended test location plans and generalized profiles, as well as on a general understanding of the project scope. As the design process advances, we welcome the opportunity to refine and update geotechnical information to fit the project's specific needs.

This report does not reflect any variations which may occur away from the location of borings. The nature and extent of variations may not become evident until construction has begun. If variations are then evident, it will be necessary for us to re-evaluate the recommendations of this report after we have conducted further evaluation of the situation.

Sampling and testing of the soil, rock, groundwater, surface water, and air for the presence of environmental contamination was beyond the scope of this exploration.

All information (written or electronic) from TTL concerning TTL's work is for the sole use and reliance of the client. TTL intends no third-party beneficiaries (expressed or implied) and copies of such information received by any third parties are not for reliance unless TTL first receives a signed Secondary Client Agreement from the third party.

Additional information about the use and limitations of a geotechnical report is provided within the Geoprofessional Business Association document included at the end of this report.

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnical-engineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

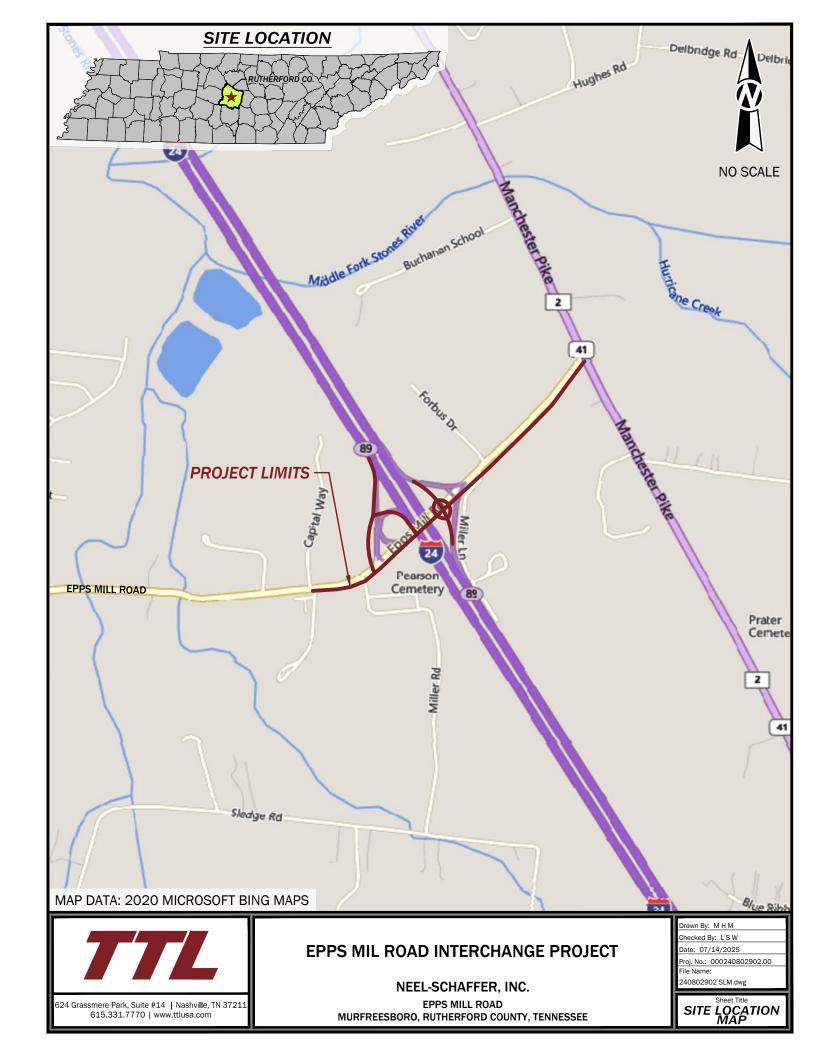
Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely.* Ask questions. Your geotechnical engineer should respond fully and frankly.

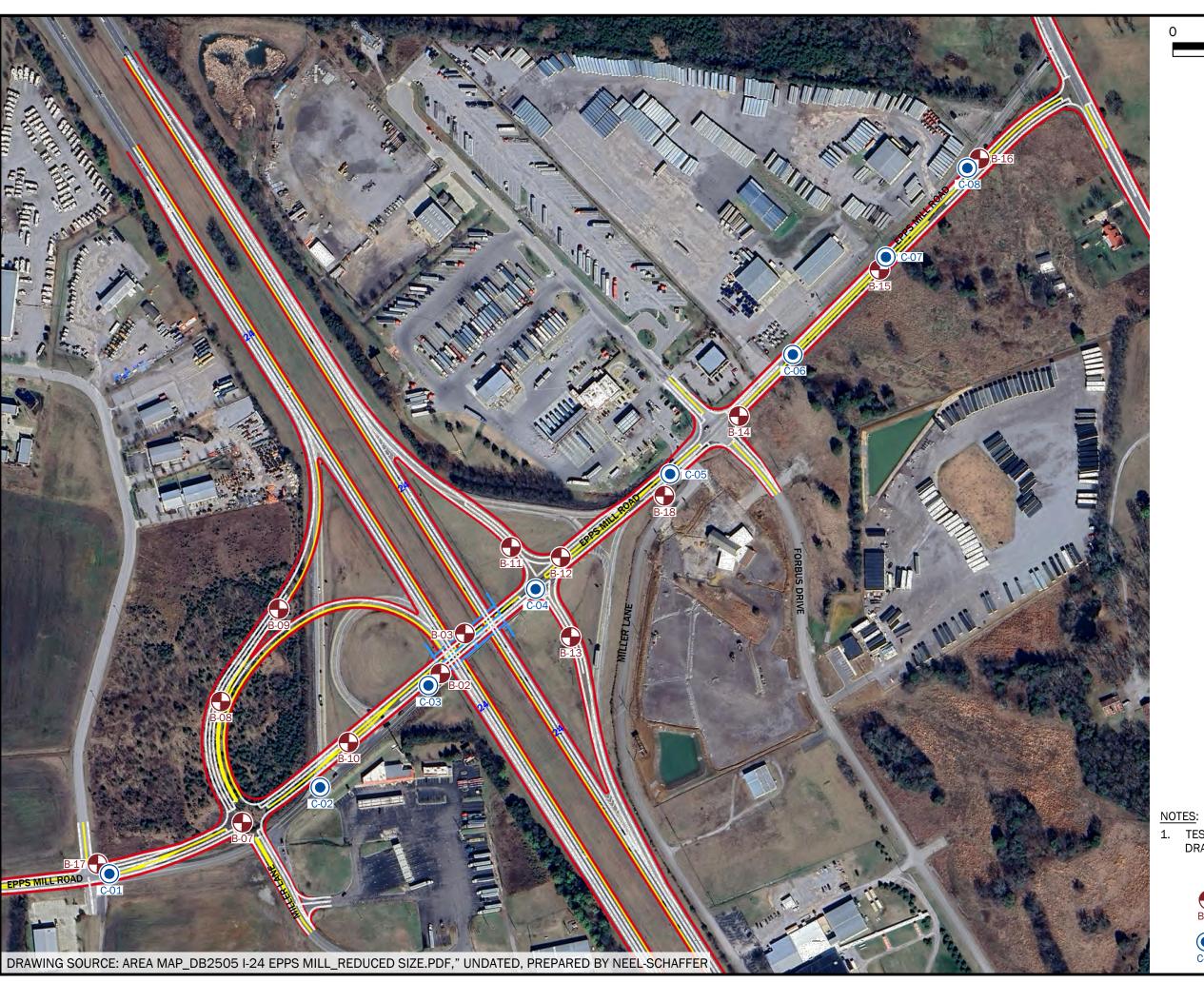
Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.




Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

APPENDIX A ILLUSTRATIONS

EPPS MIL ROAD INTERCHANGE PROJECT

1. TEST LOCATIONS SHOWN ON THIS DRAWING ARE APPROXIMATE.

300

SCALE IN FEET

LEGEND

SOIL BORING LOCATION AND IDENTIFIER

PAVEMENT CORING LOCATION AND IDENTIFIER oj. No.: 00024080 le Name: 40802902 ELP.dwg

Sheet Title

EXPLORATION
LOCATION PLAN 1

SOIL LEGEND

FINE- AND COARSE-GRAINED SOIL INFORMATION						
FINE-GRAINED SOILS			COARSE-GRAINED SOILS		PARTICLE SIZE	
(S	ILTS AND CLAY	S)	(SANDS AND GRAVELS)		<u>Name</u>	Size (US Std. Sieve)
SPT N-Value	Consistency	Estimated Q <u>u (TSF)</u>	SPT N-Value	Relative Density	Boulders Cobbles	>300 mm (>12 in.) 75 mm to 300 mm (3 - 12 in.)
0-1	Very Soft	0 - 0.25	0-4	Very Loose	Coarse Gravel	19 mm to 75 mm (3/4 - 3 in.)
2-4	Soft	0.25 - 0.5	5 - 10	Loose	Fine Gravel	4.75 mm to 19 mm (#4 - 3/4 in.)
5-8	Firm	0.5 - 1.0	11 - 30	Medium Dense	Coarse Sand	2 mm to 4.75 mm (#10 - #4)
9-15	Stiff	1.0 - 2.0	31 - 50	Dense	Medium Sand	0.425 mm to 2 mm (#40 - #10)
16-30	Very Stiff	2.0 - 4.0	51+	Very Dense	Fine Sand	0.075 mm to 0.425 mm
31+ Hard 4.0+						(#200 - #40)
Q _u = Unconfined Compression Strength					Silts and Clays	< 0.075 mm (< #200)

RELATIVE PROPORTION	IS OF SAND AND GRAVEL	RELATIVE PROPORTIONS OF CLAYS AND SILTS		
Descriptive Terms Percent of Dry Weight		Descriptive Terms	Percent of Dry Weight	
"Trace"	< 15	"Trace"	< 5	
"With"	15 - 30	"With"	5 - 12	
Modifier	> 30	Modifier	> 12	

CRITERIA FO	OR DESCRIBING MOISTURE CONDITION	CRITERIA FOR DESCRIBING CEMENTATION		
Description	<u>Criteria</u>	Description	<u>Criteria</u>	
Dry	Absence of moisture, dusty, dry to the touch	Weak	Crumbles or breaks with handling or little finger pressure	
Moist	Damp, but no visible water	Moderate	Crumbles or breaks with considerable finger pressure	
Wet	Visible free water, usually soil is below water table	Strong	Will not crumble or break with finger pressure	

	CRITERIA FOR DESCRIBING STRUCTURE
<u>Description</u>	<u>Criteria</u>
Stratified	Alternating layers of varying material or color with layers at least 6 mm thick; note the thickness
Laminated	Alternating layers of varying material or color with the layers less than 6 mm thick; note thickness
Fissured	Breaks along definite planes of fracture with little resistance to fracturing
Slickensided	Fracture planes appear polished or glossy, sometimes striated
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown
Lensed	Inclusion of small pockets of different soils such as small lenses of sand scattered through a mass of clay; note thickness
Homogeneous	Same color and appearance throughout

	ABBREVIATION	IS AND A	ACRONYMS
WOH	Weight of Hammer	N-Value	Sum of the blows for last two 6-in
WOR	Weight of Rod		increments of SPT
Ref.	Refusal	NA	Not Applicable or Not Available
ATD	At Time of Drilling	OD	Outside Diameter
DCP	Dynamic Cone Penetrometer	PPV	Pocket Penetrometer Value
Elev.	Elevation	SFA	Solid Flight Auger
ft.	feet	SH	Shelby Tube Sampler
HSA	Hollow Stem Auger	SS	Split-Spoon Sampler
ID	Inside Diameter	SPT	Standard Penetration Test
in.	inches	USCS	Unified Soil Classification System
lbs	pounds		

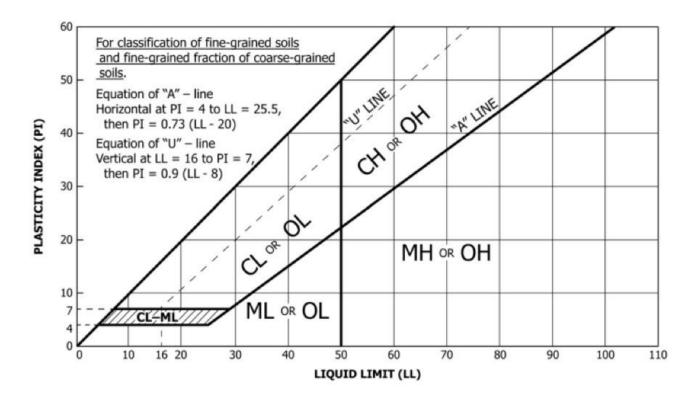
SAMPLERS AND DRILLING METHODS AUGER CUTTINGS BAG/BULK SAMPLE **GRAB SAMPLE** CONTINUOUS SAMPLES SHELBY TUBE SAMPLE PITCHER SAMPLE STANDARD PENETRATION SPLIT-SPOON SAMPLE SPLIT-SPOON SAMPLE WITH NO RECOVERY DYNAMIC CONE PENETROMETER ROCK CORE WATER LEVEL SYMBOLS abla Water Level at time of Drilling F PERCHED WATER OBSERVED AT DRILLING ▼ DELAYED WATER LEVEL OBSERVATION ☑ CAVE-IN DEPTH OBSERVED SEEPAGE

		UN	IFIED	SOIL	CLASS	SIFICATION SYSTEM (USCS)			
	sieve)	CLEAN GRAVEL	Cu > 4 Cc = 1-3	以	GW	Well-graded gravels, gravel-sand mixtures with trace or no fines			
	#4	VITH <5% FINES	Cu <u><</u> 4 and/or Cc < 1 Cc > 3		GP	Poorly-graded gravels, gravel-sand mixtures with trace or no fines			
	larger than the		Cu > 4		GW-GM	Well-graded gravels, gravel-sand mixtures with silt fines			
	is largeı	GRAVEL WITH 5% TO	Cc = 1-3		GW-GC	Well-graded gravels, gravel-sand mixtures with clay fines			
sieve)	of coarse fraction is l	12% FINES	Cu <u><</u> 4 and/or		GP-GM	Poorly-graded gravels, gravel-sand mixtures with silt fines			
he #200	coarse.		Cc < 1 Cc > 3		GP-GC	Poorly-graded gravels, gravel-sand mixtures with clay fines			
r than t	•50% of				GM	Silty gravels, gravel-silt-sand mixtures			
LS (>50% of the material is larger than the #200 sieve)	GRAVELS (>50%	MORE	L WITH THAN FINES		GC	Clayey gravels, gravel-sand-clay mixtures			
materia	GR/				GC-GM	Clayey gravels, gravel-sand-clay-silt mixtures			
% of the	sieve)	CLEAN SAND WITH	Cu > 6 Cc = 1-3		SW	Well-graded sands, sand-gravel mixtures with trace or no fines			
S (>50%	#4	<5% FINES	Cu <u><</u> 6 and/or Cc < 1 Cc > 3		SP	Poorly-graded sands, sand-gravel mixtures with trace or no fines			
SOI	smaller than the		Cu > 6		SW-SM	Well-graded sands, sand-gravel mixtures with silt fines			
E GRAINED		SAND WITH 5% TO	Cc = 1-3		SW-SC	Well-graded sands, sand-gravel mixtures with clay fines			
COARSE	fraction is	12% FINES	%		SP-SM	Poorly-graded sands, sand-gravel mixtures with silt fines			
	se				SP-SC	Poorly-graded sands, sand-gravel mixtures with clay fines			
	SANDS (>50% of coar	CANID			SM	Silty sands, sand-gravel-silt mixtures			
	NDS (>	MORE	SAND WITH MORE THAN 12% FINES		SC	Clayey sands, sand-gravel-clay mixtures			
	SA				SC-SM	Clayey sands, sand-gravel-clay-silt mixtures			
si li		တ ့			ML	Inorganic silts with low plasticity			
nateria	eve)	& CLAY	ıan 50)		CL	Inorganic clays of low plasticity, gravelly or sandy clays, silty clays, lean clays			
0% of r	200 sie	SILTS	SILTS & CLAYS (Liquid Limit less than 50)		CL-ML	Inorganic clay-silts of low plasticity, gravelly clays, sandy clays, silty clays, lean clays			
ILS (>5	n the #.				OL	Organic silts and organic silty clays of low plasticity			
NED SO	smaller than the #200 sieve)	AYS	50)		MH	Inorganic silts of high plasticity, elastic silts			
FINE GRAINED SOILS (>50% of material is	sms	LTS & CLAYS	(Liquid Lilling more than 50)		СН	Inorganic clays of high plasticity, fat clays			
<u>E</u>		SIL7 (Li mon			ОН	Organic clays and organic silts of high plasticity			

USCS - HIGHLY ORGANIC SOILS Primarily organic matter, dark in color, organic odor Peat, humus, swamp soils with high organic contents

	OTHER MATERIALS
	BITUMINOUS CONCRETE (ASPHALT)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CONCRETE
	CRUSHED STONE/AGGREGATE BASE
77 77 7 77 77	TOPSOIL
	FILL
	UNDIFFERENTIATED ALLUVIUM
	UNDIFFERENTIATED OVERBURDEN
X	BOULDERS AND COBBLES

$\frac{\text{UNIFORMITY COEFFICIENT}}{C_{\text{u}} = D_{60}/D_{10}}$


$\frac{\text{COEFFICIENT OF CURVATURE}}{\text{C}_{\text{C}} = (\text{D}_{30})^2/(\text{D}_{60}\text{x}\text{D}_{10})}$

Where:

 D_{60} = grain diameter at 60% passing D_{30} = grain diameter at 30% passing D_{10} = grain diameter at 10% passing

PLASTICITY CHART FOR USCS CLASSIFICATION OF FINE-GRAINED SOILS

IMPORTANT NOTES ON TEST BORING RECORDS

- 1) The report and graphics key are an integral part of these logs. All data and interpretations in this log are subject to the explanations and limitations stated in the report.
- 2) Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual or differ from those shown. Solid lines are used to indicate a change in the material type, particularly a change in the USCS classification. Dashed lines are used to separate two materials that have the same material type, but that differ with respect to two or more other characteristics (e.g. color, consistency).
- 3) No warranty is provided as to the continuity of soil or rock conditions between individual sample locations.
- 4) Logs represent general soil and rock conditions observed at the point of exploration on the date indicated.
- 5) In general, Unified Soil Classification System (USCS) designations presented on the logs were based on visual classification in the field and were modified where appropriate based on gradation and index property testing.
- 6) Fine-grained soils that plot within the hatched area on the Plasticity Chart, and coarse-grained soils with between 5% and 12% passing the #200 sieve require dual USCS symbols as presented on the previous page.
- 7) If the sampler is not able to be driven at least 6 inches, then 50/X" indicates that the sampler advanced X inches when struck 50 times with a 140-pound hammer falling 30 inches.
- 8) If the sampler is driven at least 6 inches, but cannot be driven either of the subsequent two 6-inch increments, then either 50/X'' or the sum of the second 6-inch increment plus 50/X'' for the third 6-inch increment will be indicated.
 - Example 1: Recorded SPT blow counts are 16 50/4", the SPT N-value will be shown as N = 50/4"
 - Example 2: Recorded SPT blow counts are 18 25 50/2", the SPT N-value will be shown as N = 75/8"

TEST BORING RECORD LEGEND FOR ROCK

			ROCK CORE INFORMATION			
•	ROCK QUALITY DESIGNATION (RQD) ROCK HARDNESS CRITERIA					
Percent RQD	Quality	Very Hard	Rock can be broken by heavy hammer blows			
0 - 25	Very Poor	Hard	Rock cannot be broken by thumb pressure, but can be broken by moderate hammer blows			
25 - 50 50 - 75	Poor Fair	Moderately Hard	Small pieces can be broken off along sharp edges by considerable hard thumb pressure; can be broken with light hammer blows			
75 - 90 90 - 100	Good Excellent	Soft Very Soft	Rock is cohesive but breaks very easily with thumb pressure at sharp edges and crumbles with firm hand pressure Rock disintegrates or easily compresses when touched; can be hard soil			

Recovery (%) = $\frac{\text{Length of Core Sample Recovered}}{\text{Length of the Core Run}} \times 100$

RQD (%) = $\frac{\text{Sum of Lengths of Intact Rock Pieces of 4 in. and Longer}}{\text{Length of the Core Run}} \times 100$

WEATHERING OR ALTERATION

Term Description
Fresh No evidence of alteration

Slightly Weathered Slight discoloration on surface

Moderately Weathered Discoloring evident; alteration penetrating well below rock surface

Highly Weathered Entire rock mass discolored

Decomposed Rock reduced to a soil with relict rock texture

JOINT ROUGHNESS COEFFICIENT (JRC)

<u>Coefficient</u>	<u>Description</u>
14 - 20	Very Rough: Near vertical edges evident
10 - 14	Rough: Smooth ridges, surface abrasion
6-10	Slightly Rough: Asperities on surface can be felt
2-6	Smooth: Appears and feels smooth
0-2	Slickensided: Visible polishing, striated surface

FRACTURE/JOINT DENSITY

	010112/301111 52110111
<u>Description</u>	Observed Fracture Density
Intact	No fractures or joints less than 6 ft. apart
Slightly Fractured/Jointed	Lengths from 3 ft. to 6 ft.
Moderately Fractured/Jointed	Lengths from 1 ft. to 3 ft.
Highly Fractured/Jointed	Lengths from 4in. to 1 ft.
Intensely Fractured/Jointed	Lengths less than 4 inches

DISCONTINUITY TERMS

<u>Fracture:</u> Collective term for any natural break excluding shears, shear zones, and faults

Joint (JT): Planar break with little or no displacement

Foliation Joint (FJ) or Bedding Joint (BJ): Joint along foliation or bedding

Incipient Joint (IJ) or Incipient Fracture (IF): Joint or fracture not evident until wetted and dried; breaks along existing surface

Random Fracture (RF): Natural, very irregular fracture that does not belong to a set

Bedding Plane Separation or Parting: A separation along bedding after extraction from stress relief or slaking

Fracture Zone (FZ): Planar zone of broken rock without gouge

Mechanical Break (MB): Breaks due to drilling or handling; drilling break is denoted as (DB) and hammer break is denoted as (HB)

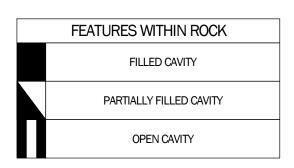
 $\underline{\text{Shear}\,(\text{SH}):}$ Surface of differential movement evident by presence of slickensides, striations, or polishing

<u>Shear Zone (SZ):</u> Zone of gouge and rock fragments bounded by planar shear surfaces

<u>Fault (FT):</u> Shear zone of significant extent; differentiation from shear zone may be site-specific

BEDDING THICKNESS

Massive	> 3 ft.
Thick	1 ft. to 3 ft.
Medium	4 in. to 1 ft.
Thin	1-1/4 in. to 4 in.
Banded	1/4 in. to 1-1/4 in.
Parting	< 1/4 in.


APERTURE WIDTH

<u>Term</u>	<u>Spacing</u>
Very Tight	< 0.1 mm
Tight	0.1 to 0.25 mm
Partly Open	0.25 to 0.5 mm
Open	0.5 to 2.5 mm
Moderately Wide	2.5 to 10 mm
Wide	10 mm to 1 cm
Very Wide	1 to 10 cm
Extremely Wide	10 cm to 1 m
Cavernous	> 1 m

	17/12/4	ROCK CLAS
	PARTIALLY WEATHERED ROO (UNDIFFERENTIATED)	CK
	WEATHERED ROCK (UNDIFF	ERENTIATED)
	△ △ 4 BRECCIA	
(0	CONGLOMERATE	
CLASTIC SEDIMENTARY ROCKS	SANDSTONE	
ENTARY	weathered sandstone	
SEDIME	× × × × × × × × × × × × × × ×	
-ASTIC	CLAYSTONE	
び	SHALE	
	WEATHERED SHALE	
	COAL	
CKS	LIMESTONE	
CARBONATE EDIMENTARY ROCKS	WEATHERED LIMESTONE	
CARB(IMENT/	DOLOMITE	
SED	ĺ⇔ົ⇔ ⇔ ↑ CORAL	
	CHALK	
EVAPORITE ROCKS	WEATHERED CHALK	
	GYPSUM	
	HALITE	
	CALCITE	
SNC	GRANITE	
INTRUSIVE IGNEOUS ROCKS	GRANO-DIORITE	
TRUSIVI RO	DIORITE	
Z	GABBRO	

SSIFICATION		
OKS		TUFF
US ROC		RYOLITE
EXTRUSIVE IGNEOUS ROCKS	0000	DACITE
RUSIVE	+ + +	ANDESITE
EXT		BASALT
	V	MARBLE
	کر کر کر کر	QUARTZITE
OCKS		SLATE
METAMORPHIC ROCKS		PHYLLITE
AMORF	S S	SCHIST
MET	24 24 77 77 17 7 7	GNEISS
		AMPHIBOLITE
	• • • • • • • • • • • • • • • • • • • •	METAGRAYWACKE

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillin	a Cc		TTL, Inc.			County	2 00	Rer	marks:		1			
Driller: R. Bell C Logged By: B. Miller E		Date Drilled: 04/22/2025 Back patc					Backfilled with bentonite and auger cuttings upon a patch of asphalt was applied at the surface comple							
							aved wate	er level in	dicates po	st rock c	oring wa	ater le		
			CME-550X		702			prov	vided dra	wing. N.E	interpolat E. = Not er	ing betw icounter	veen cor ed	itours
	ner Ty		Auto		/02 /A	11								
- Idiiii		, pc.		$\overline{\subseteq}$ Water Level At Ti		Of Drilling	N.E.		Delayed	l Water	l evel		13 f	t
Drillin	g Me	thod:	Hollow-stem auger w/SPT sampling and NQ wireline	Cave In	1110	or Drilling	N/A		elayed W					· 22/2
				Cave III	1		Sample		nayeu v	Valer D	ate	Lab	04/.	
							Jampie			<u> </u>		Lab		Ι£
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	ription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
		18616	. ASPHALT, 6 inches	0.5										
700			BASESTONE; 16 inches	1.8		24-21-10 (31)	10			3.5				
-	_	\bowtie	FILL : LEAN CLAY, dark brown moist (CL)	i and brown,						67.	-			
-	-	\bigotimes	- N-value amplified at 1 foot of basestone	due to	\setminus	4-5-5 (10)	33			27.4	-			
-	5 -	\bowtie	- Bulk Sample obtained from	auger cutting		(10)								
- 695	-	\bowtie	between 3 and 10 feet			3-4-5 (9)	100			23.6	1			
_		\bowtie			\vdash	(9)				26.8	45-20-25			
_	_	\bowtie				3-5-9	67			24.0	40 20 20			
-	10 –	\bowtie			\triangle	(14)					1			
- 690	-	\bowtie		10.0										
090	•	\bowtie	FILL: FAT CLAY, dark brown v	12.0 vith brown										
-	<u></u> -	\bowtie	mottling, with trace of limestormoist (CH)			10-13-13	33			04.0	- 1			
	15 -	\bowtie	moist (CH)		\boxtimes	(26)	33			24.9	1			
_	-	\bowtie												
685	-	\bigotimes												
-	-	\bigotimes]			
-	-	\bowtie			\times	16-16-13 (29)	67			18.1				
_	20 - _	\bowtie												
680		\bigotimes		22.0										
_	_		RESIDUUM : FAT CLAY, very s with some chert gravel (coars											
-	-		John Grieft graver (Goal-	23,,,	\bigvee	5-12-14 (26)	67			27.7	61-27-34			
-	25 -				\vdash	(20)								
- 675	-													
	_		Auger refusal at 28.5 feet; be											
			LIMESTONE, moderately hard	28.5 d. grav. fine to			100	76	-					
- -	30 -		medium grained, moderately slightly weathered to fresh, w partings throughout	fractured,										

7		7	Epps Mill Road Neel-3 Murfrees	Scha	ffer, Inc.		Ject			LOS	g of S B	·02	ri
			Murfrees Ruthe	oro , rford	, Tenness County	see					Page	2 of 2	
						Sample	s	1			Lab		,
Elevation (feet)	Depth (feet)	Graphic Log	Materials Description	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	
	-		LIMESTONE , moderately hard, gray, fine to medium grained, moderately fractured, slightly weathered to fresh, with shale			100	76						
665	35 - - -		partings throughout 38.5			100	86						
-	-		Boring terminated at 38.5 feet										
-	40 -												
- 660	_												
	_												
-	_												
-	45 -												
-	-												
655	-												
-	-												
	50 -												
-	_												
650	_												
-	-												
-	-												
_	55 -												
645													
_	_												
-	-												
-	60 -												
- 640	-												
5 +5	-	•											

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillir	ng Co	.:	TTL, Inc.	Project Number: (0002	40802902	2.00		marks:	la la c				
Drille	r:		R. Bell	Date Drilled: (04/23	3/2025		com	npletion. [Delayed v	nite and au water leve	l indicate	es post r	ock
Logg	ed By	/ :	B. Miller	Boring Depth: 1	4.5 f	it					evation ob provided			
Equip	ment	t:	CME-550X	Boring Elevation:	-680	ft		enc	ountered					
Hamr	mer T	уре:	Auto	Coordinates:	N/A			.,,						
D ::::			Hollow-stem auger w/SPT	$ ot = ot \sum$ Water Level At T	ime	Of Drilling	N.E.	<u> </u>	Delayed	l Water	Level		2 ft	
Drillir	ng Me	thod:	sampling and NQ wireline	Cave In			N/A	De	elayed W	/ater D	ate		04/	23/2
				'			Samples					Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	ription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
			TOPSOIL, 6 inches	0.5										
-	▼ -		POSSIBLE FILL: FAT CLAY, reblack mineral staining, trace and limestone fragments, mo	fine roots,	X	5-4-3 (7)	67			24.4	62-26-36			
_	-	\bigotimes	- bulk sample obtained betw	een 1 and 3 feet										
- 675	-	₩	\Auger refusal at 4.5 feet; beg	gin NQ coring 4.5	\succeq	46-50/3" (50/3")	33							
-	- - -		LIMESTONE, moderately har medium grained, slightly frac weathered to fresh, with sha throughout - soil seam at 5.6 to 5.7 feet	tured, slightly										
670 - - -	10 -			14.5			100	74						
665	15 -		Boring terminated	14.5 at 14.5 feet					-					
-	- -													
660	20 -	- - -												
- 655	- 25 -	-												

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillin	ng Co	.:	TTL, Inc.		Project Num	nber: 0	0024	0802902	2.00		narks:	h augor	cuttings ι	inon com	nletion	
Drille	r:		R. Bell		Date Drilled	: 0	4/22	/2025		Offs	et boring	attempt	ed 5 feet	west wit	h similar	refu
Logg	ed By	′ :	B. Miller		Boring Dept	h: 1.	5 ft			prov	ided drav	ained by wing. N.E	interpola . = Not e	ting betv ncounter	veen con ed	itours
Equip	ment	:	CME-550X		Boring Eleva	ation: ~	680	ft								
Hamr	mer T	уре:	Auto		Coordinates	s: N	/A									
Drillin	na Me	thod:	Hollow-stem auger	w/SPT	abla Water Le	vel At Ti	me C	of Drilling	N.E.	_	Delayed	l Water	Level		N/A	
	.9 1110		sampling		Cave In				N/A	De	layed W	/ater Da	ate		N/A	ı
							<u> </u>		Samples	5	1			Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materi	als Desc	ription		Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
		H.	TOPSOIL, 1 inch			0.1 .*	1 1									
_	_		WEATHERED LIMES Auger r		: 1.5 feet	1.5	><	50/3" (50/3")	5			6.7				
675 - 670 - 665 - 660	5															
	- - -															

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Orillin	ng Co.	:	TTL, Inc.	Project Number: (0024	40802902	2.00		narks:	J				
Orille	r:		R. Bell	Date Drilled: ()4/22	2/2025		obta	kfilled wit ained by i	nterpolat	ing betw	een cont	pletion. ours on p	Eleva provi
ogg	ed By	:	B. Miller	Boring Depth: 5	5.5 ft			drav	wing. N.E.	. = Not ei	ncountere	ed		
Equip	ment	:	CME-550X	Boring Elevation: ^	676	ft								
Hamr	mer T	уре:	Auto	Coordinates: N	N/A			'						
S	\ 4 -	41I	Hollow-stem auger w/SPT	$ ot = ot \sum$ Water Level At T	ime (Of Drilling	N.E.	<u>_</u>	Delayed	d Water	Level		N/A	
חווווזכ	ig ivie	thod:	sampling	Cave In			N/A	De	layed W	/ater Da	ate		N/A	ı
				•			Samples					Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	ription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
675		*******	TOPSOIL, 4 inches	0.3	1									Ĭ
	-		RESIDUUM : LEAN CLAY, brofine roots and limestone frag		\times	20-50/3" (50/3")	33							
-	_		(CL)			(30/0 /	1							
-	-		 N-values amplified by limes fragments 	stone	\sim	50/4"	33							
-	-					(50/4")	<u> </u>							
- 670	5 -		A	5.5	4									
070	-		Auger refusal at	5.5 Teet										
665 - 660 - 655	10													
1 1	- - -													
655 -	20 -													

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillir	ng Co	.:	TTL, Inc.	Project Number: 0	0024	40802902	2.00		marks:					
Drille	r:		R. Bell	Date Drilled: 0)4/22	2/2025		obta	ained by i	nterpolat	cuttings u ing betwe	en cont		
Logg	ed By	' :	B. Miller	Boring Depth: 6	ft f			drav	wing. N.E.	= Not er	ncountere	d		
Equip	ment	:	CME-550X	Boring Elevation: ~	670	ft								
Hamı	mer T	уре:	Auto	Coordinates: N	I/A									
<u> </u>			Hollow-stem auger w/SPT	abla Water Level At T	ime (Of Drilling	N.E.	<u> </u>	Delayed	l Water	Level		N/A	
Drillir	ng Me	thod:	sampling	Cave In			N/A	De	layed W	/ater Da	ate		N/A	
							Samples	•				Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	ription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
		******	TOPSOIL, 2 inches	0.2 ,										
_			RESIDUUM : LEAN CLAY, very with black mineral staining, t	race fine	\leq	50/5" (50/5")	33			14.6	37-22-15			
			roots, and occasional limesto moist (CL)	one fragments,										
			- N-values amplified due to	limestone		10-50/1"	33							
665	-		fragments			(50/1")	$\overline{}$							
	5 -			6.0										
	-		Auger refusal a		1									
660 - - 655 - - 650	10 - 10 - - - 15 - - - 20 -													
645	- - - 25 -						third part							

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillir	ng Co	.:	TTL, Inc.	Project Number: (0002	40802902	2.00		narks:	h augar	outtings:	inon com	nlotica	Elove
Drille	r:		R. Bell	Date Drilled: 0	4/21	1/2025		obta	kfilled wit ained by i	nterpolat	ting betw	een cont		
Logg	ed By	/ :	B. Miller	Boring Depth: 8	3.5 ft			drav	wing. N.E.	= Not e	ncountere	ed		
Equip	ment	t:	CME-550X	Boring Elevation: ^	687	ft								
Hamı	mer T	уре:	Auto	Coordinates: N	I/A			,						
Drillir	a Ma	thod:	Hollow-stem auger w/SPT	abla Water Level At T	ime (Of Drilling	N.E.	₹	Delayed	l Water	Level		N/A	
ווווווו	ig ivie	tillou.	sampling	Cave In			N/A	De	layed W	/ater Da	ate		N/A	
							Samples	3			_	Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	cription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strenath
			TOPSOIL, 4 inches	0.3	-									Ĭ
685	-	\bigotimes	POSSIBLE FILL: LEAN CLAY, trace fine roots and some lim fragments, moist (CL)		X	4-7-9 (16)	33							
-	- 5 -	\bigotimes			X	7-3-8 (11)	33							
_	_		RESIDUUM: FAT CLAY, very	5.5 stiff, red-brown	-									
680	_		with gray mottling, with trace fragments and some limesto		\mathbb{X}	11-19-25 (44)	67							
_	_		which amplified N-value, mo	ist (CH)										
_	_		Auger refusal at	8.5 t 8.5 feet	-									
_	10 -													
_	_													
675	_													
_	_													
_	_													
_	15 -													
_	_													
670	_													
_	_													
_	_													
_	20 -													
_	-													
665	_													
_	_													
_	_													
	25 -													

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillir	ng Co	.:	TTL, Inc.	Project Number:	0002	408029	02.00			narks:					
Drille			R. Bell			2/2025			obta	ained by i	nterpolat	cuttings u	een cont		
Logg	ed By	<i>'</i> :	B. Miller		11 ft							ncountere			
	oment		CME-550X	Boring Elevation:	~685	ft									
Hamı	mer T	уре:	Auto	Coordinates:	N/A										
D.:::::	14.	I	Hollow-stem auger w/SPT	\subseteq Water Level At	Time	Of Drillin	ng N.	E.	<u>_</u>	Delayed	d Water	Level		N/A	
Drillir	19 ме	thod:	sampling	Cave In			N/	/A	De	layed W	/ater Da	ate		N/A	
				•			Sar	nples					Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	cription	Sample Graphic	Blow Counts (N/Refusal)		Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
	_		TOPSOIL, 6 inches	0.5											
		\bowtie	POSSIBLE FILL : LEAN CLAY, some limestone fragments (c			4-5-7 (12)	3	33			18.8				
		\bowtie	moist (CL)	3.0			+	-							
	_		RESIDUUM : FAT CLAY, stiff t red-brown to light brown, wi			4-4-7	1	00			25.8				
680	5-		fragments and limestone fra		\triangle	(11)					20.0				
	´_														
					\mathbb{X}	3-5-11 (16)	1	00			24.6				
	_						+								
	_		- N-value for sample at 8.5 fe	eet amplified	$\overline{}$	14-50/3		33			15.4				
675	10 -		due to limestone fragments			(50/3"									
-	_	///	Auger refusal a	11.0 at 11 feet											
_	_														
-	_														
670	15 -														
-	_														
-	-														
-	-														
665	-														
	20 -														
_	-														
_	_														
_	_														
660															
	25 -	1 I shall r	not be separated from the corr	rospondina Instrumor	t of S	ervice: r	l o thire	l narty	, may r	elv upoi	l n this h	I oring log	or the	Corresh	l onc

Epps Mill Road Interchange Project

	4						, Tennes d County						Page	1 of 1	
Drillin	ıa Co		TTL, Inc.		Project Number:			2 00	Rer	marks:					
Driller		••	R. Bell		Date Drilled:		2/2025	2.00	Bac	kfilled wit	th auger o	cuttings u	pon com	pletion.	Elev
Logge	-	<u>':</u>	B. Miller		Boring Depth:	17 ft	-,					ncountere		- GI - OII	ر. م.
Equip			CME-550X		Boring Elevation:		ft								
Hamn			Auto		Coordinates:	N/A									
		7		/CDT	abla Water Level A		Of Drilling	N.E.	✓	Delayed	d Water	Level		N/A	
Drillin	g Me	thod:	Hollow-stem sampling	auger w/SP1	Cave In		o.	N/A		elayed W				N/A	
					Cave III			Sample		layca v	I		Lab	11/7	
_									<u> </u>		(%		Lab		ŧ
Elevation (feet)	Depth (feet)	Graphic Log	J	Materials Desc	ription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Ompressive Strength
			TOPSOIL, 6 inc			.5									
	-	\bigotimes	possible fill brown, with so moist (CL)			X	8-7-9 (16)	67			13.8				
		\bowtie					7-10-9	67	-		15.0	ł			
690	_	\bigotimes				IX.	(19)				15.9	-			
	5 -	$\langle \rangle \rangle$	DECIDIUM. CA	T CL AV		.5									
-	- -		RESIDUUM : FA with gray mott fragments, mo	ling, with abur	stiff, brown Idant limestone	X	6-13-11 (24)	67	-		19.6				
- 685	10 -		- N-value for s due to limestor		eet amplified		23-17-26 (43)	67	- -		6.3	-			
680	- - - 15 -		WEATHERED L clay	.IMESTONE, w	12 ith interbedded	.5	37-50/3" (50/3")	67	- -		8.7				
	_														
_	-		Α	uger refusal a	17 t 17 feet	.0									
675 _	20 -														
- 670	- 25 -														

TTI

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillin	g Co.	:	TTL, Inc.	Project Number: (00024	4080290	2.00		narks:		•			
Driller			R. Bell	<u> </u>		3/2025		Offs	et boring	attempt	cuttings ι ed 5 feet	east wit	h similar	refus
Logge	ed By	:	B. Miller	,	4 ft			Elev	ation obt	ained by	interpola . = Not e	ting betw	veen cor	
Equip			CME-550X	Boring Elevation:	~688	ft								
Hamn	ner T	уре:	Auto	Coordinates: I	N/A									
D.::!!:	-: \ \ 1 -	ما ما ما	Hollow-stem auger w/SPT	abla Water Level At 1	ime (Of Drilling	g N.E.	<u> </u>	Delayed	d Water	Level		N/A	١
Drillin	ig ivie	tnoa:	sampling	Cave In			N/A	De	layed W	/ater Da	ate		N/A	
				•			Samples	•				Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	cription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
			TOPSOIL, 6 inches	0.5										Ĭ
_	_	\bowtie	POSSIBLE FILL : LEAN CLAY, with some black mineral stai		\geq	50/5" (50/5")	15							
- 685	=	\bowtie	(CL)	3.0										
	_		WEATHERED LIMESTONE	4.0		50/5"	0							
_	_		Boring terminate			(50/5")	_							
_	5 –													
-	-													
-	-													
680	-													
-	-													
-	10 -													
-	-													
-	-													
675	-													
-	-													
-	15 –													
-	-													
-	-													
670	_													
-	_													
-	20 -													
_	_													
_	_													
665	_													
_	_													
														1

Drilling Co.:

Logged By:

Equipment:

Driller:

TTL, Inc.

R. Bell

B. Miller

CME-550X

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Murfreesboro, Tennessee

Log of Soil Boring **B-14**

Page 1 of 1

Rutherford County

04/22/2025

Project Number: 000240802902.00

4 ft

~687 ft

Date Drilled:

Boring Depth:

Boring Elevation:

Remarks: Backfilled with auger cuttings upon completion. Offset boring attempted 5 feet south with similar refusal. Elevation obtained by interpolating between contours on provided drawing. N.E. = Not encountered

Hammer Type: Auto Coordinates: N/A

Drilling	Me ¹	thod:	Hollow-stem auger w/SPT sampling	$rac{ extstyle extstyle$	ne (Of Drilling			Delayed layed W				N/A	
$\overline{}$]	. 3	Cave III			N/A Samples		iayed W	rater Da	11 0	Lab	N/A	
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	ription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
- 685	- -		TOPSOIL, 4 inches WEATHERED LIMESTONE, b interbedded clay	رو.30 own, with some		30-50/3" (50/3")	33			6.8				
- - -	5 -		RESIDUUM: LEAN CLAY, very with trace fine roots, moist (- N- Value amplified due to re Auger refusal a	r stiff, brown, CL)	X	50/3" (50/3")	10			42.2	42-25-17			
680	-													
-	10 -													
675	- - -													
- - 670	15 -													
_	- - 20 -													
- 665	-													
- - -	- - 25 -													

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillir	ng Co	.:	TTL, Inc.	Project Number: (0002	4080290	2.00		narks:	h auger	cuttings u	inon com	noletion	Fleva
Drille	r:		R. Bell	Date Drilled: ()4/22	2/2025		obta	ained by i	nterpolat	ing between	een cont	ours on p	provid
Logg	ed By	′ :	B. Miller	Boring Depth:	5.5 ft				wing. N.L.	1101 61	icountere	s u		
Equip	omen	:	CME-550X	Boring Elevation:	685	ft								
Hamı	mer T	уре:	Auto		N/A									
Drillir	na Me	thod:	Hollow-stem auger w/SP	$_{T} ^{ extstyle oxtstyle T}$ Water Level At T	ime (Of Drilling	N.E.	T	Delayed	d Water	Level		N/A	
			sampling	Cave In			N/A	De	layed V	/ater Da	ate		N/A	
					<u> </u>		Samples	;				Lab	1	
Elevation (feet)	Depth (feet)	Graphic Log	Materials De:	scription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
		******	TOPSOIL, 4 inches	0.3	·									
-	-		RESIDUUM : LEAN CLAY, ve red-brown, with trace fine	ery stiff, roots, and	\geq	50/5" (50/5")	33			24.0				
_	-		limestone fragments, moist - N-value amplified due to				1							
_	-		`.fragments	3.0	1	10-15-50/5"	67			0.5.0				
680	_		FAT CLAY, very stiff, red-br brown mottling, with some		X	(65/11")				25.3				
	5 -		fragments, which amplified (CH)		\prod									
-	-		Auger refusal	at 5.5 feet										
- 675 - - 670 - - - 665	- 10													
- - -	-													
660					1	1	1		Ī					

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drillir	ng Co.	.:	TTL, Inc.	Project Number: 0		d County 40802902	2.00		narks:		1			
Drille			R. Bell	-		2/2025		Bacl Offs	kfilled wit et boring	h auger attempt	cuttings ι ed 5 feet	upon con East witl	npletion. n refusal	at 1
Logg	ed By	':	B. Miller		.5 ft			Elev	ation obta ided drav	ained by	interpola	iting betw	veen cor	
	ment		CME-550X	Boring Elevation: ~	685	ft								
Hamr	mer T	уре:	Auto	Coordinates: N	I/A									
D.:!!!		41I	Hollow-stem auger w/SPT	igert Water Level At Ti	me (Of Drilling	N.E.	<u>_</u>	Delayed	l Water	Level		N/A	١
חוווות	ig ivie	thod:	sampling	Cave In			N/A	De	layed W	/ater Da	ate		N/A	١
				•			Samples					Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	cription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strength
			TOPSOIL, 6 inches Auger refusal at	0.5										
680 - - 675 - 670	5 10													
665	20 -													
-	_													
660	25 -	i I			1	I	1 1		I	I	1	1	ı	1

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

Drilling Co.: Driller: Logged By:			TTL, Inc. Project Number: 000240802902.00					Remarks: Backfilled with auger cuttings upon completion.						
			R. Bell	Date Drilled:	Date Drilled: 04/24/2025			Offs	Offset boring attempted 5 feet east with similar refu					refus
			B. Miller	Boring Depth:	Boring Depth: 2.5 ft				Elevation obtained by interpolating between contours provided drawing. N.E. = Not encountered					
Equipment:		:	CME-550X	Boring Elevation:	Boring Elevation: ~677 ft									
Hamı	mer T	уре:	Auto	Coordinates:	N/A									
Drilling Method:		thod:	Hollow-stem auger w/S	$_{PT}$ $ extstyle $	✓ Water Level At Time Of Drilling N.E.Cave In N/A		₹	▼ Delayed Water Level						
			sampling	Cave In			De	Delayed Water Date				N/A		
						Samples						Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials D	escription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strenath
			TOPSOIL, 4 inches		3,.									Ĭ
- 675	-	XX	POSSIBLE FILL: LEAN CLA some limestone fragment			8-7-10 (17)	50			22.8	47-21-26	ļ		
5,5	-	\bowtie	Auger refusa	2.	5	(17)								
	_		/lugor roruss	dt 2.0 100t										
-	_													
-	5 -													
_	_													
670														
	_													
-	-													
-	-													
-	10 -													
_	_													
665														
-	-													
-	-													
-	15 -													
-	_													
660	_													
_	-													
-	-													
-	20 -													
-	_													
655	_													
_														
Ī														
-	-													
	25 -					I	1		Ī					1

Epps Mill Road Interchange Project Neel-Schaffer, Inc.

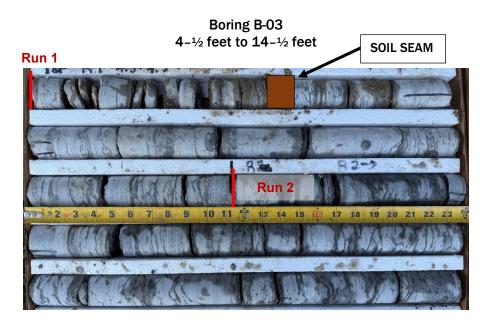
Murfreeshoro Tennessee

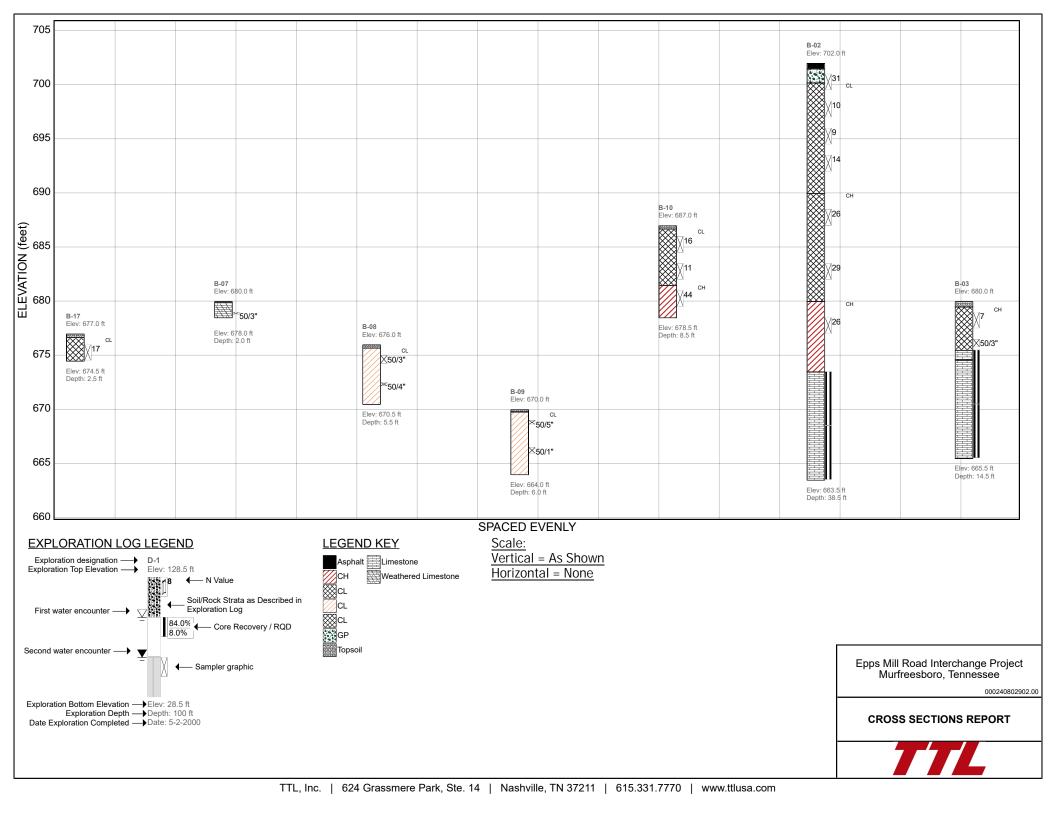

Log of Soil Boring B-18

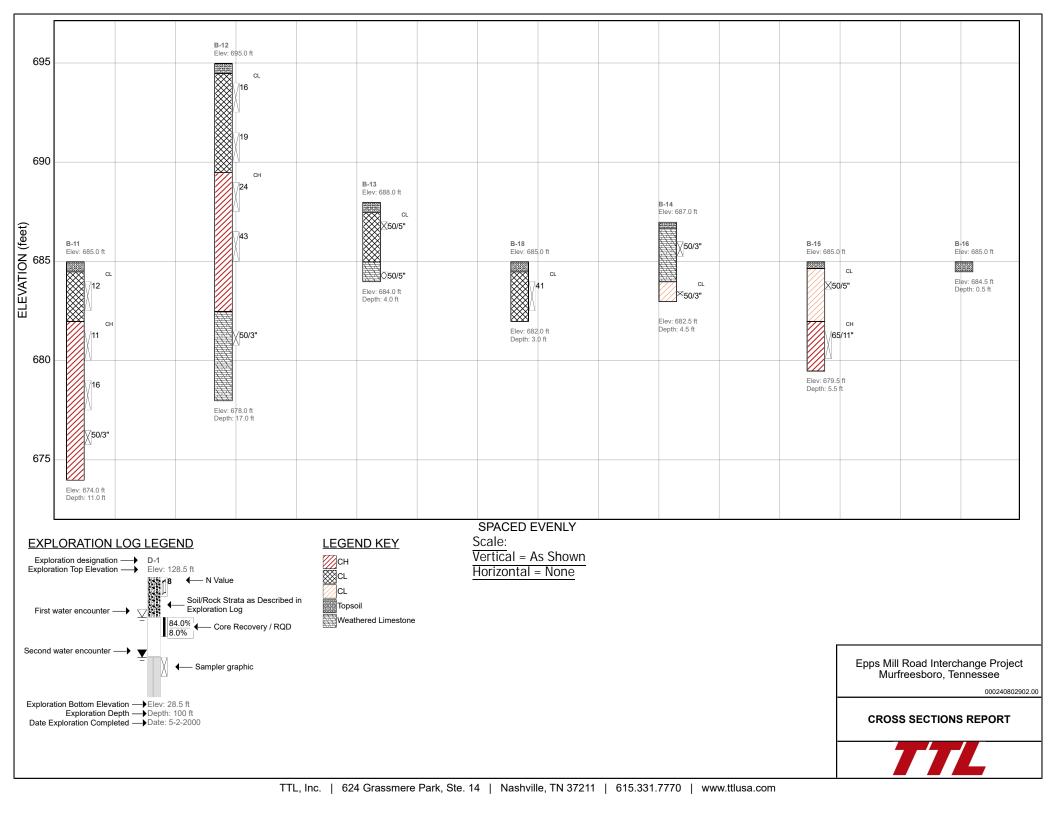
Drillin	a Co	.:	TTL, Inc.	Project Number: 0		d County 40802902	2.00	Rer	narks:		1			
Driller		••	R. Bell	Backfilled with auger o							cuttings upon completion. ed 5 feet West with refusal at			
		<u>'</u> :	B. Miller	3.5 feet. Ele				feet. Elev	Elevation obtained by interpolating between on provided drawing. N.E. = Not encountered					
Equip			CME-550X	Boring Elevation: ~		ft					~····································	14		
Hamn			Auto	Coordinates: N/A										
			Hollow-stem auger w/SPT	\(\sigma_{\sigma_{\sigma}}\)		Of Drilling	N.E.	<u></u>	Delayed	l Water	Level		N/A	
Drillin	g Me	thod:	sampling	Cave In			N/A		layed W				N/A	
				1			Samples					Lab		
Elevation (feet)	Depth (feet)	Graphic Log	Materials Desc	cription	Sample Graphic	Blow Counts (N/Refusal)	Recovery (%)	RQD (%)	Pocket Penetrometer (tsf)	Moisture Content (%)	Atterberg Limits (LL-PL-PI)	% Fines	Dry Density (pcf)	Compressive Strenath
			TOPSOIL, 6 inches	0.5	-									
-	_	\bigotimes	POSSIBLE FILL : LEAN CLAY, and light brown mottling, wit fragments, moist (CL)	h limestone		10-25-16 (41)	33							
-	-	XXX	Auger refusal a	3.0 at 3 feet										
-	-													
680	5 -													
_	_													
_	_													
-	-													
-	-													
675	10 -													
_	_													
٦	-													
-	-													
-	-													
670	15 –													
	_													
٦	-													
-	-													
-	-													
665	20 -													
_	_													
٦	_													
-	-													
-	-													
660	25 -	l l			1						1		I	

ROCK CORE PHOTOGRAPHS EPPS MILL ROAD INTERCHANGE PROJECT MURFREESBORO, RUTHERFORD COUNTY, TENNESSEE TTL PROJECT NO. 000240802902.00

Boring B-02 28-1/2 feet to 38-1/2 feet


Run 1


Run No.	Depth (feet)	Recovery (percent)	RQD (percent)	Rock Quality
1	28-½ to 33-½	100	76	Good
2	33-½ to 38-½	100	86	Good



ROCK CORE PHOTOGRAPHS EPPS MILL ROAD INTERCHANGE PROJECT MURFREESBORO, RUTHERFORD COUNTY, TENNESSEE TTL PROJECT NO. 000240802902.00

Run No.	Depth (feet)	Recovery (percent)	RQD (percent)	Rock Quality
1	4-½ to 9-½	94	66	Fair
2	9-½ to 14-½	100	74	Fair

ASPHALT CORE PHOTOGRAPHS EPPS MILL ROAD INTERCHANGE PROJECT MURFREESBORO< RUTHERFORD COUNTY, TENNESSEE TTL PROJECT NO. 000240802902.00

Asphalt Core C-01

Asphalt Core C-03

Asphalt Core C-02

Asphalt Core C-04

ASPHALT CORE PHOTOGRAPHS EPPS MILL ROAD INTERCHANGE PROJECT MURFREESBORO< RUTHERFORD COUNTY, TENNESSEE TTL PROJECT NO. 000240802902.00

Asphalt Core C-05

Asphalt Core C-07

Asphalt Core C-06

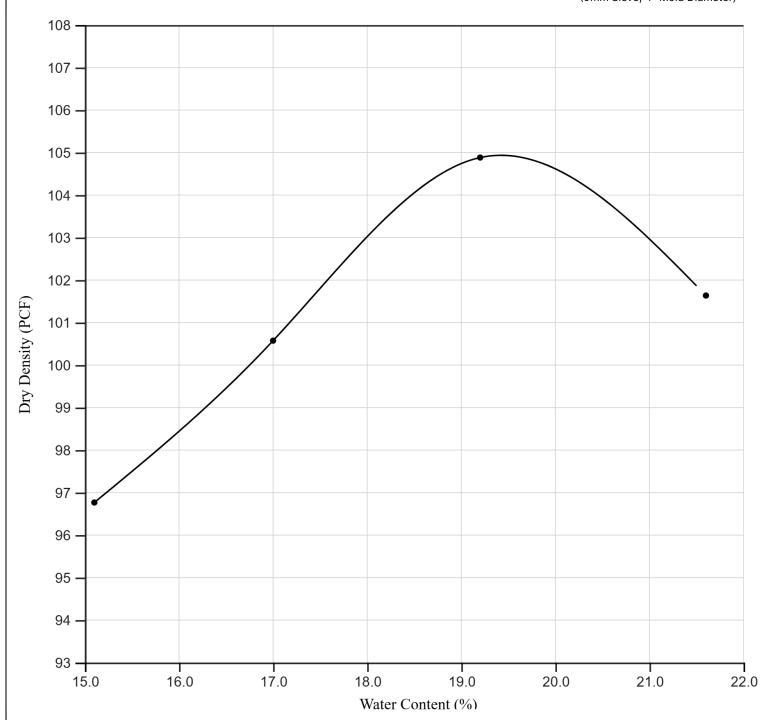
Asphalt Core C-08

APPENDIX B REFERENCE MATERIALS

Laboratory Results Summary

PROJECT Epps Mill Road Interchange ProjectCLIENT Neel-Schaffer, Inc.

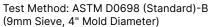
PROJECT NO. 000240802902.00 **LOCATION** Murfreesboro, Tennessee

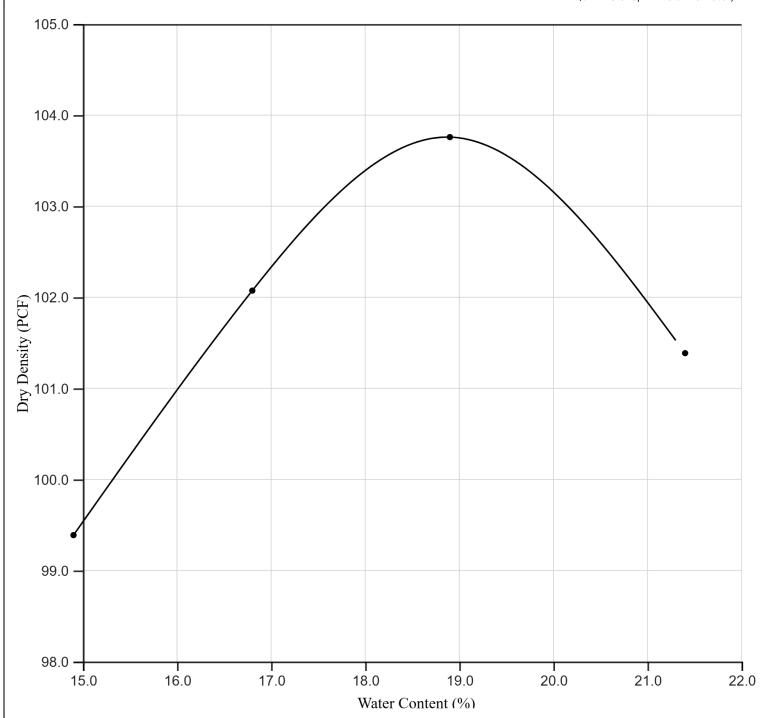

Boring ID	Depth (ft)	Moisture Content (%)	LL	PL	PI	%Gravel	% Sand	% Fines	Dry Density (PCF)	AASHTO	USCS
B-02	1	3.5									
B-02	3	27.4									
B-02	3.5	23.7									
B-02	6	23.6									
B-02	3 - 10 (Bulk)	26.8	45	20	25					A-7-6	CL
B-02	8.5	24									
B-02	13.5	24.9									
B-02	18.5	18.1									
B-02	23.5	27.7	61	27	34					A-7-6	СН
B-07	1	6.7									
B-09	1	14.6	37	22	15					A-6	CL
B-11	1	18.8									
B-11	3.5	25.8									
B-11	6	24.6									
B-11	8.5	15.4									
B-12	1	13.8									
B-12	3.5	15.9									
B-12	6	19.6									
B-12	8.5	6.3									
B-12	13.5	8.7									
B-14	1	6.8									
B-14	3.5	42.2	42	25	17					A-7-6	CL
B-15	1	24									
B-15	3.5	25.3									
B-17	1	22.8	47	21	26					A-7-6	CL

Epps Mill Road Interchange Project Murfreesboro, Tennessee

B-02,

Test Method: ASTM D0698 (Standard)-B (9mm Sieve, 4" Mold Diameter)


SAMPLE INFORMATION				
Sample Identification:				
Date Sample Obtained:	-			
Sample Depth/Elevation:	7.5'/694.5'			
Sample USCS Description Before Test Preparation:				

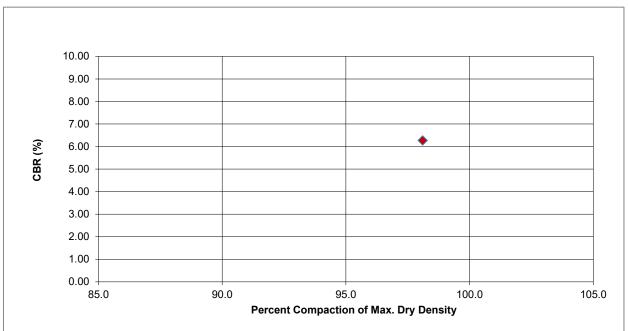

TEST RESULTS	Uncorrected for Oversize Material	Corrected for Oversize Material
Natural Water Content:	18.2%	
Maximum Dry Density:	104.9PCF	
Optimum Moisture Conte	nt: 19.4%	
Remarks:		

Epps Mill Road Interchange Project Murfreesboro, Tennessee

B-03,

SAMPLE INFORMATION				
Sample Identification:				
Date Sample Obtained:	-			
Sample Depth/Elevation:	1.0'/679.0'			
Sample USCS Description Before Test Preparation:				

TEST RESULTS	Uncorrected for Oversize Material	Corrected for Oversize Material
Natural Water Content:	18%	
Maximum Dry Density:	103.8PCF	
Optimum Moisture Conte	nt: 18.9%	
Remarks:		


Project Name: Epps Mill Road Interchange

Project No.: 000240802902.00

Sample Identification: B-02 (3-10)
Sample Description: Brown CL / A-7-6

	Sample Data					
Sample No.	1					
Hours Soaked	96					
Surcharge Amount (lbs)	10.0					
Wet Unit Weight (pcf)	122.1					
Dry Unit Weight (pcf)	102.9					
Moisture (% as compacted):						
Before Compaction	18.7					
After Compaction	18.7					
Top 1" after soaking	21.8					
Average after soaking	21.8					
Swell (% of initial height)	1.00					
% of Maximum Dry Density	98.1					
Bearing Ratio (%)	6.27					

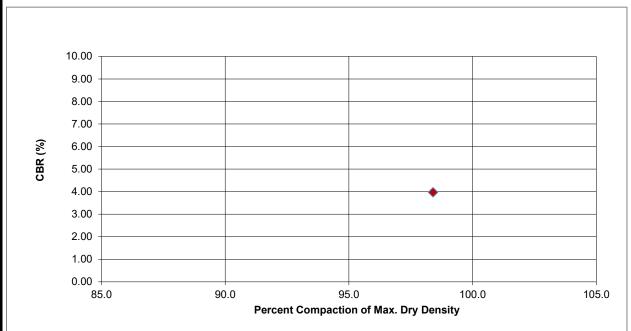
Proctor Information: Optimum Moisture Content (%): 19.4 Max. Dry Density (pcf): 104.9

Special Sample Preparation (if applicable): N/A

Pertinent Testing: N/A

Percent Retained on 19-mm Sieve: N/A

Project Name: Epps Mill Road Interchange


Project No.: 000240802902.00

Sample Identification: B-03 (1-3)

Sample Description: Red-Brown CH / A-7-6

	Sample Data					
Sample No.	1					
Hours Soaked	96					
Surcharge Amount (lbs)	10.0					
Wet Unit Weight (pcf)	121.8					
Dry Unit Weight (pcf)	102.1					
Moisture (% as compacted):						
Before Compaction	19.2					
After Compaction	18.9					
Top 1" after soaking	21.5					
Average after soaking	21.5					
Swell (% of initial height)	1.07					
% of Maximum Dry Density	98.4					
Bearing Ratio (%)	3.97					

Proctor Information: Optimum Moisture Content (%): 18.9 Max. Dry Density (pcf): 103.8

Special Sample Preparation (if applicable): N/A

Pertinent Testing: N/A

Percent Retained on 19-mm Sieve (if N/A